Home Download Help Forum Resources Extensions FAQ NetLogo Publications Contact Us Donate Models: Library Community Modeling Commons Beginners Interactive NetLogo Dictionary (BIND) NetLogo Dictionary User Manuals: Web Printable Chinese Czech Farsi / Persian Japanese Spanish
|
NetLogo User Community Models(back to the NetLogo User Community Models)
WHAT IS IT?
Most materials are not continuous arrangements of atoms, but rather composed of thousands or millions of microscopic crystals, known as grains. This model shows how the configuration and sizes of these grains change over time. Grain size is a very important characteristic for evaluating the mechanical properties of materials; it is exhaustively studied in metallurgy and materials science.
Usually this kind of study is made by careful analysis and comparison of pictures taken in microscopes, sometimes with the help of image analysis software. Recently, as the processing power of computers has increased, a new and promising approach has been made possible: computer simulation of grain growth. Anderson, Srolovitz et al. proposed the most widely known and employed theory for computer modeling and simulation of grain growth, using the Monte Carlo method. Instead of considering the grains as spheres, and being obliged to make numerous geometrical approximations, Anderson proposed that the computer would simulate the behavior of each individual atom in the system. Each atom would follow a very simple rule: it will always try to have, in its immediate neighborhood, as many atoms as possible with the same orientation as it.
This model is part of the MaterialSim (Blikstein & Wilensky, 2004) curricular package. To learn more about MaterialSim, see http://ccl.northwestern.edu/materialsim/.
HOW IT WORKS
The basic algorithm of the simulation is simple: atoms are trying to be as stable as possible. Their stability is based on the number of equal neighbors: the more equal neighbors (i.e. atoms with the same orientation) an atom has, the more stable it is. If it has many different neighbors, it is unstable, and not likely to be in that position for long, because during the simulation atoms will try to relocate to more stable positions. Therefore, the steps are:
1) Choose a random atom.
The ANNEALING-TEMPERATURE slider controls the probability of maintaining an re-orientation which yields more instability. The FRACTION-ELEMENT-2 slider defines the percentage of second-phase particles to be created when the user setups the simulation. Those particles and not movable and are not subject to grain growth. Atoms see those particles as a different neighbor.
Note that the actual number of atoms is small compared to a real metal sample. Also, real materials are three-dimensional, while this model is 2D.
HOW TO USE IT
(1) Simulation starting point:
(2) Change the shape of the atoms
(3) Draw grains
(4) Run simulation
Simulation size
Special features
Grain measurement
Plots and monitors
THINGS TO NOTICE
When you setup with a random orientation and run the simulation, notice that the speed of growth decreases with time. Toward the end of the simulation, you might see just two or three grains that fight with each other for along time. One will eventually prevail, but this logarithmic decrease of speed is an important characteristic of grain growth. That is why the GRAIN SIZE plot is a straight line in a "log-log" scale.
THINGS TO TRY
Increase the value of the ANNEALING-TEMP slider. What happens to the GRAIN SIZE plot, and to the boundaries' shapes?
Try to increase the FRACTION-ELEMENT2 slider to 5%. Then press START WITH RANDOM ARRANGEMENT and GO. What happens to grain growth? Now try several values (1, 3, 5, 7, 9%), for instance. What happens with the final grain size? What about the GRAIN SIZE plot and the GROWTH EXPONENT?
One advanced use of this model would be to get a digital picture of a real metallic sample, reduce noice and increase contrast with image editing programs, and load into this model using the IMPORT IMAGE button. Don't forget to update the WIDTH and HEIGHT sliders and the view's size to accommodate the picture, and also to change the patch size in order to be able to see the whole sample.
EXTENDING THE MODEL
This models assumes that the misorientation between two grains has no effect on their growth rates. Two grains with a very similar crystallographic orientation have the same growth rate as grains which orientations differ by a lot. Try to take the angular misorientation into consideration.
When we insert second-phase particles, all of them have the same size. Try to create a slider that changes the size of the particles.
NETLOGO FEATURES
This model uses some special features:
RELATED MODELS
Crystallization Basic
CREDITS AND REFERENCES
This model is part of the MaterialSim (Blikstein & Wilensky, 2004) curricular package. To learn more about MaterialSim, see http://ccl.northwestern.edu/materialsim/.
Two papers describing the use of this model in education are:
Blikstein, P. & Wilensky, U. (2004) MaterialSim: An agent-based simulation toolkit for Materials Science learning. (PDF, 1.5 MB) Proceedings of the International Conference on Engineering Education. Gainesville, Florida.
The core algorithm of the model was developed at the University of Sao Paulo and published in: Blikstein, P. and Tschiptschin, A. P. Monte Carlo simulation of grain growth (II). Materials Research, Sao Carlos, 2 (3), p. 133-138, jul. 1999.
HOW TO CITE
If you mention this model in an academic publication, we ask that you include these citations for the model itself and for the NetLogo software:
In other publications, please use:
COPYRIGHT NOTICE
Copyright 2005 Uri Wilensky. All rights reserved.
Permission to use, modify or redistribute this model is hereby granted, provided that both of the following requirements are followed:
|
(back to the NetLogo User Community Models)